Course Code	Course Name	L-T-P- Credits	Year of Introduction		
CE401	DESIGN OF STEEL STRUCTURES	4-0-0-4	2016		
Prerequisite : CE202 Structural Analysis II					
Course objectives:					

- To introduce the limit state design of steel structural components subjected to bending, compression and tensile loads including the connections
- To enable design of structural components using timber

Syllabus:

Steel and steel structures – bolted and welded connections- tension members – compression members – beams – roof trusses – purlins – timber structures – columns- composite beams

Expected Outcomes:

The students will be able to

- i. design bolted and welded connections
- **ii.** design tension members and beams using the IS specifications
- iii. design columns under axial loads using IS specifications
- iv. design beams and plate girders
- v. assess loads on truss and design purlins
- vi. design structural components using timber.

Text Books:

- 1. L S Jayagopal, D Tensing., Design of steel structures, S Chand & Company, 2015
- 2. S K Duggal., Limit State design of steel structures, Tata McGraw Hill, 2010
- 3. Subramanian N, Design of steel Structures, Oxford University Press, 2011

References :

- 1. P. Dayaratnam., Design of Steel Structures, Wheeler Publishing, 2003
- 2. Punmia B. C., Jain A. K. and Jain A. K., Design of Steel Structures, Laxmi Publications (P) Ltd, 2017
- 3. Raghupathi, Steel Structures, Tata McGraw Hill, 2006
- 4. Ramchandra S and Virendra Gehlot, Design of Steel Structures Vol. II, Standard Book House, 2007
- 5. V L Shah & Veena Gore, Limit State Design of steel Structures, Structures Publications, 2009
- 6. William T Segui., Steel Design, Cenage Learning, 6e, 2017
- 7. IS 800 2007, Code of practice for Structural steel design, BIS

	COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %		
Ι	Introduction to steel and steel structures, properties of steel, structural steel sections. Introduction to design: Design loads and load combinations, limit state design concepts. Connections bolted and welded (direct loads)	9	15		

Π	Tension members-Types of sections – net area- design of tension members- concept of shear lag-use of lug angle-connections in tension members	9	15
	FIRST INTERNAL EXAMINATION		
III	Compression members- design of struts- solid and built up columns for axial loads design of lacings and battens-column bases- slab base – gusseted base	10	15
IV	Design of beams- laterally restrained and unrestrained – simple and compound beams- plate girders subjected to uniformly distributed loads – design of stiffeners.	9	15
	SECOND INTERNAL EXAMINATION		
V	Design of roof trusses- types-design loads and load combinations- assessment of wind loads- design of purlins. Moment resistant/Eccentric connections (in plane and out of plane)	10	20
VI	Design of timber structures: types of timber - classification - allowable stresses-design of beams-flexure, shear, bearing and deflection considerations-Design of columns. Design of composite beam sections with timber and steel.	9	20
	END SEMESTER EXAMINATION		

Estd.

Maximum Marks : 100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note : 1. Each part should have at least one question from each module

Course Code	Course Name	L-T-P- Credits		ar of duction
CE403	S STRUCTURL ANALYSIS - III	3-0-0-3	2	016
Prerequ	usite :CE303 Structural Analysis - II		I	
	 objectives: To enable the students to have a comprehensive idea of m emphasis on the relative advantages of the flexibility method To enable the students to visualize structural dynamics prostructural analysis and vibration theory 	od and the	stiffness	method
	s : mate Methods of Analysis of Multistoried Frames, Ma ity method, Stiffness method, Introduction to direct stiffness m			
The stud		stiffness n method esponse of	nethod SDOF sy	/stems
 G S Pandit and S P Gupta, Structural analysis a Matrix approach, McGraw Hill Education (India), 2e, 2008 Gere, J.M. and William Weaver, Matrix Analysis of framed structures, CBS Publishers, 1990 Kenneth M Leet, Chia Ming Uang, Anne M Gilbert, Fundamentals of structural analysis, Tata McGraw Hill Pvt Ltd., 4e, 2010 Reddy C.S., Basic structural analysis, Tata McGraw Hill, third edition, 3e, 2012 References : Anil. K. Chopra, Dynamics of structures, Pearson Education/ Prentice Hall India, 5e, 2016 Clough R.W. and Penzein, J., Dynamics of structures, Tata McGraw Hill, 1995 Madhujith Mukhopadhyay and Abdul Hamid Sheikh, Matrix and Finite Element Analysis of Structures, Ane Books India, 2009 Mario Paz , Structural Dynamics: Theory & Computation, 2e, CBS Publishers, 2004 Rajasekharan. S. and Sankarasubramanian G., Computational structural Mechanics, PHI, 2009 Wang C.K., Matrix method of structural analysis, International Text book company, 1970 				
	COURSE PLAN			C
Modu le	Contents		Hours	Sem. Exam Marks %
I	Approximate Methods of Analysis of Multistoried Frames: A for vertical loads-substitute frames-loading condition for ma hogging and sagging moments in beams and maximum b moment in columns- wind load analysis of multistoried fr portal method and cantilever method for lateral load analysis.	aximum bending ames –	6	15

п	Matrix analysis of structures: static and kinematic indeterminacy- force and displacement method of analysis-definition of flexibility and stiffness influence coefficients Concepts of physical approach	6	15	
	FIRST INTERNAL EXAMINATION			
ш	Flexibility method: flexibility matrices for truss and frame elements-load transformation matrix-development of total flexibility matrix of the structure-analysis of simple structures-plane truss and plane frame-nodal loads and element loads-lack of fit and temperature effects	7	15	
IV	Stiffness method: Development of stiffness matrices by physical approach-stiffness matrices for truss and frame elements- displacement transformation matrix-analysis of simple structures- plane truss and plane frame-nodal loads and element loads-lack of fit and temperature effects	7	15	
	SECOND INTERNAL EXAMINATION			
v	Introduction to direct stiffness method-Rotation of axes in two dimensions, stiffness matrix of elements in global co- ordinates from element co-ordinates- assembly of load vector and stiffness matrix, solution of two span continuous beam-single bay single storey portal frame.	8	20	
VI	Structural dynamics-introduction-degrees of freedom-single degree of freedom subjected to harmonic load -linear systems- equation of motion, D'Alembert's principle-damping- free response of damped and undamped systems- logarithmic decrement- transient and steady state responses, Dynamic magnification factor – Vibration isolation –Concept of two degree of freedom systems (No derivation and numerical problems)	8	20	
	END SEMESTER EXAMINATION			

Estd

11/1

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE405	ENVIRONMENTAL ENGINEERING- I	3-0-0-3	2016

Pre-requisites: CE203 Fluid Mechanics -I

Course objectives:`

- To study the significance of water resources and the factors affecting the quality and quantity of water
- To study the various types of treatment techniques adopted for a public water supply system

Syllabus :

Water sources, demand, factors, Quantity estimation, Population forecasting, Quality of water. Water treatment- Physical methods, Chemical methods. Design of sedimentation tank, flocculator, clariflocculator, filters, Membrane treatment techniques. Disinfection- methods. Distribution of water, Pumps, Hardy Cross method of analysis

Expected Outcomes:

The students will

- i. become aware of the various pollutants affecting water quality
- ii. know about the different treatment units available in a water treatment plant and their design procedures

Text Books:

- 1. B.C Punmia, "Water Supply Engineering", Laxmi Publications Pvt. Ltd., 2016
- 2. G S Birdie, Water Supply and Engineering, Dhanapat Rai Publishing Company, 2014
- 3. P.N. Modi, "Water Supply Engineering", Standard Book House, NewDelhi
- 4. Peavy H S, Rowe, D.R. Tchobanaglous "Environmental Engineering" Mc GrawHill Education, 1984
- 5. S.K.Garg, "Water Supply Engineering", Khanna Publishers. 2010

References

- 1. K N Dugal, Elements of Environmental Engineering, S Chand and Company Pvt Ltd, 2007
- 2. Mackenzie L Davis, Introduction to Environmental Engineering, McGrawhill Education (India), 2012
- 3. Metcalf & Eddy, "Waste Water Engineering", Tata Mc Grawhill Publishing Co Ltd, 2003
- 4. P Venugopala Rao, Environmental Engineering, PHI Learning Pvt Ltd, 2002
- 5. Subhash Verma, Varinder Kanwar, Siby John, Water supply Engineering, Vikash Publishing, 2015

	COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %		
Ι	Introduction of environment- sources of water supply-Water demand, quantification of water demand through population forecasting – Factors affecting consumption-Fluctuations in demand	7	15		

II	Types of intakes-Conveyors, pumps and location of pumping station- Quality of water - Drinking water standards - Physical, chemical and biological analysis.	6	15
	FIRST INTERNAL EXAMINATION		
III	Treatment of water-Theory and principles of Sedimentation tanks- Stoke's law-Types of settling (Type I & Type II only)-Coagulation- Mixing-Flocculation, Design of Sedimentation tanks (circular and rectangular)-Clariflocculators	7	15
IV	Filtration-Types of filters- Working and Design of Rapid and Slow sand filters. Loss of head in filters, Pressure filters	7	15
	SECOND INTERNAL EXAMINATION		
V	Disinfection of water - Methods, Chlorination-Types, Factors affecting - Chlorine demands. Miscellaneous treatment-Ion exchange, Lime-soda process, Electro dialysis - Colour, Taste and Odour removal-Adsorption-Aeration-Fluoridation-Defluoridation	7	20
VI	Lay out of water distribution network-Methods of distribution-Hardy cross method-Equivalent pipe method-Pipe appurtenances.	8	20
END SEMESTER EXAMINATION			

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note :

- 1. Each part should have at least one question from each module
- 2. Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE407	TRANSPORTATION ENGINEERING - II	3-0-0-3	2016

Prerequisite : CE308 Transportation Engg.-I

Course Objectives:

- To set a solid and firm foundation in Railway engineering, including the history development, modern trends, maintenance, geometric design and safety of railways.
- To introduce dock, harbour and tunneling

Syllabus :

Introduction to railways in India and its evolution, modern technologies, geometric design of tracks, railway operation control, maintenance and an introduction to the railway accidents. Alignment, surveying, driving, ventilation and drainage of tunnels and types of harbours and docks.

Course Outcome:

• This course will enable students to gain knowledge in railway and water transportation.

Text Books:

- 1. Mundrey J. S, Railway Track Engineering, Tata McGraw Hill, 2009
- 2. Rangawala, S.C., Railway Engineering, Charotor Publishing House
- 3. Rao G. V, Principles of Transportation and Highway Engineering, Tata McGrawHill, 1996
- **4.** Srinivasan, R., Harbour, Dock & Tunnel Engineering, Charotor Publishing House, 28e, 2016

References:

- 1. Bindra, S.P., A course in Docks and Harbour Engineering, Dhanpat Rai& Sons
- 2. Chandra, S. and Agarwal, M.M. ,Railway Engineering, Oxford University Press, New Delhi, 2008
- 3. Saxena, S. C and Arora, S. P, Railway Engineering, Dhanpat Rai& Sons, 7e, 2010
- 4. Subhash C. Saxena, Railway Engineering, Dhanpat Rai& Sons

Module	Contents	Hours	Sem. Exam Marks %
I	Introduction to Railways in India: Role of Indian Railways in National Development – Railways for Urban Transportation – Modern developments- LRT & MRTS, tube railways, high speed tracks. Alignment- basic requirements and factors affecting selection, Component parts of a railway track - requirements and functions - Typical cross-section	7	15
II	Permanent Way : Components and their Functions: Rails - Types of Rails, Rail Fastenings, Concept of Gauges, Coning of Wheels, Creeps and kinks . Sleepers – Functions, Materials, Density, Ballast less Tracks. Geometric design of railway track: Horizontal curves, radius – super	7	15

	elevation -cant deficiency - transition curves - gradients - different types - Compensation of gradients.		
	FIRST INTERNAL EXAMINATION		
III	Railway operation and control: Points and Crossings – Design features of a turnout – Details of station yards and marshalling yards – Signaling, interlocking of signals and points - Principles of track circuiting - Control systems of train movements – ATC, CTC – track circuiting	6	15
IV	Maintenance:- Introduction to track maintenance, Items of trackmaintenance, packing and over hauling, screeningRailway accidents: Human and system contribution to catastrophicaccidents, Human Factors in Transport Safety.	6	15
	SECOND INTERNAL EXAMINATION		
V	Tunnel Engineering: Tunnel - sections - classification - tunnel surveying -alignment, transferring centre, grade into tunnel – tunnel driving procedure - shield method of tunneling, compressed air method, tunnel boring machine, Tunnel lining, ventilation - lighting and drainage of tunnels.	8	20
VI	 Harbours- classification, features, requirements, winds and waves in the location and design of harbours. Break waters - necessity and functions, classification, alignment, design principles, forces acting on break water - construction, general study of quays, piers, wharves, jetties, transit sheds and warehouses - navigational aids - light houses, signals - types - Moorings Docks - Functions and types - dry docks, wet docks - form and arrangement of basins and docks 	8	20
	END SEMESTER EXAMINATION		1

Maximum Marks :100

Exam Duration: 3 Hrs

- Estd.
- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI: 2 questions out of 3 questions carrying 20 marks each
- Note : 1.Each part should have at least one question from each module
 - 2 Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE409	QUANTITY SURVEYING AND VALUATION	3-0-0-3	2016

Pre-requisites: CE334 Computer Aided Civil Engg. Lab

Course objectives:

- To have an awareness regarding specifications, analysis of rates, valuation etc. in connection with construction
- To prepare detailed estimates, bar bending schedules of various items of work

Syllabus :

Specifications- Analysis of rates- CPWD data book and schedule of rates- Detailed specification, preparation of data and analysis of rates for various items of work- Quantity Surveying- Types of Estimate - Valuation- Methods of valuation-Depreciation- Fixation of rent- Detailed estimate including quantities, abstract and preparation of various items of works, Preparation of bar bending schedules for various RCC works

Expected Outcomes:

The students will be able to

- i. work out the quantities of materials and labour required for different types of civil works
- ii. prepare schedule of rates for various items of work

Text Books

- 1. B N Dutta, Estimating and costing in Civil Engineering, USB publishers and distributers Ltd. New Delhi
- 2. D D Kohli, RC Kohli, A textbook of Estimating and costing, S Chand Publishing, 2011
- **3.** Dr. S. Seetharaman, M. Chinnasamy, Estimation and Quantity Surveying, Anuradha Publications, Chennai.

References:

- 1. BS Patil, Civil Engineering contracts and estimates, Universities press
- 2. V N Vazirani & S P Chandola, Civil engineering Estimating and Costing, Khanna Publishers.
- 3. IS 1200-1968; Methods of measurement of Building & Civil Engineering works.
- 4. CPWD data book and schedule of rates.

Note:

For analysis of rate and cost estimation, unit rate and labour requirement should be given along with the questions in the question paper. No other charts, tables, codes are permitted in the Examination Hall. If necessary, relevant data shall be given along with the question paper.

	COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %		
I	General Introduction- Quantity Surveying- Basic principles-Types of Estimates - Specifications- purposes and basic principles-general specifications - Detailed specifications-Method of measurement of various items of work. Analysis of rates- Introduction to the use of CPWD data book and schedule of rates- conveyance and conveyance statement -	6	10		

	Miscellaneous charges.		
П	II Preparation of data and analysis of rates for various items of work connected with building construction and other civil engineering structures with reference to Indian Standard Specification.		10
	FIRST INTERNAL EXAMINATION		
III	Detailed estimate including quantities, abstract and preparation of various items of works- buildings- centerline method and long wall short wall method- sanitary and water supply works- soak pits, septic tanks, overhead tanks, culverts, Retaining walls, road construction. Bar-bending schedule-preparation of bar-bending schedule for RCC works connected with building construction, culverts and minor irrigation works.	18	50
	SECOND INTERNAL EXAMINATION		
IV	 Valuation - Explanation of terms, types of values, sinking fund, years purchase, Depreciation - Straight line method, constant percentage method, S.F method .Obsolescence. Valuation of real properties-rental method, profit based method, depreciation method. Valuation of landed properties -belting method, development method, hypothecated building scheme method. Rent calculation. Lease and Lease hold property 	12	30
	END SEMESTER EXAMINATION		

Maximum Marks: 100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 10 marks each
- Part B Module III : 2 questions out of 3 questions carrying 25 marks each
- Part C Module IV : 2 questions out of 3 questions carrying 15 marks each
- Note : 1. Part A should have at least one question from each module
 - 2. Part B three full questions carrying 25 marks on building estimate, preparation of bending schedule, or estimation of any other structure.
 - 3. Part A and C each question can have a maximum of 2 subdivisions (a, b)

Prerequisites: CE4 Course objectives: • To ec List of Experiment 1. To analyse the p sample and to c	NVIRONMENTAL ENGINEERING LAB 05 Environmental Engineering - I quip the students in doing analysis of water and ts: (Minimu 10 experiments are mandatory) physical characteristics viz. colour, turbidity, ar determine its suitability for drinking purposes chemical characteristics of a given water sample tability	nd conductiv	vity of a given water
Course objectives: • To ec List of Experiment 1. To analyse the p sample and to co	quip the students in doing analysis of water and ts: (Minimu 10 experiments are mandatory) physical characteristics viz. colour, turbidity, ar determine its suitability for drinking purposes chemical characteristics of a given water sample	nd conductiv	vity of a given water
• To ex List of Experiment 1. To analyse the p sample and to c	s: (Minimu 10 experiments are mandatory) ohysical characteristics viz. colour, turbidity, ar determine its suitability for drinking purposes chemical characteristics of a given water sample	nd conductiv	vity of a given water
1. To analyse the p sample and to c	physical characteristics viz. colour, turbidity, ar determine its suitability for drinking purposes chemical characteristics of a given water sample	Y	
2 To analyze the		e viz. pH, a	
assessing its pot		r ,	cidity, alkalinity for
•	chemical characteristics of a given water sampl s its suitability for drinking purposes and build		-
4. To determine th	e Dissolved Oxygen content of a given water s	ample for c	hecking its potability
5. To determine th	e available chlorine in a sample of bleaching p	owder	
6. To analyse the v	various types of solids in a given water sample		
7. To determine th	e BOD of a given wastewater sample		
8. To determine th	e COD of a given wastewater sample		
9. To determine th	e optimum dosage of alum using Jar test		
10. To determine th	e Nitrates / Phosphates in a water sample		
11. To determine th	e iron content of a water sample		
12. To determine th Expected outcome:	e MPN content in a water sample and assess the	e suitability	for potability
• The s	students will be able to assess quality of water t	for various j	purposes
	2014		

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE461	WAVE HYDRODYNAMICS AND CAOSTAL ENGINEERING	3-0-0-3	2016

Pre-requisite : CE206 : Fluid Mechanics II

Course objectives:

- 1. To introduce the fundamentals in ocean wave mechanics and coastal engineering.
- 2. To impart knowledge and comprehension over the basic aspects of wave hydrodynamics.
- 3. To equip the students with the state-of-the-art in coastal zone protection.

Syllabus :

Linear Wave Theory-Derivation for Velocity potential, Wave kinematics, Wave kinetics, Wave Power. Wave propagation in Shallow water region. Wave pressure, Wave forces-Morrison equation, Froude –Krylov force, Linear diffraction theory. Coastal process, Coastal protection works, Environmental parameters.

Expected Outcomes:

• The students will be able to develop skills and knowledge to solve the issues connected with ocean wave interaction with offshore and coastal features.

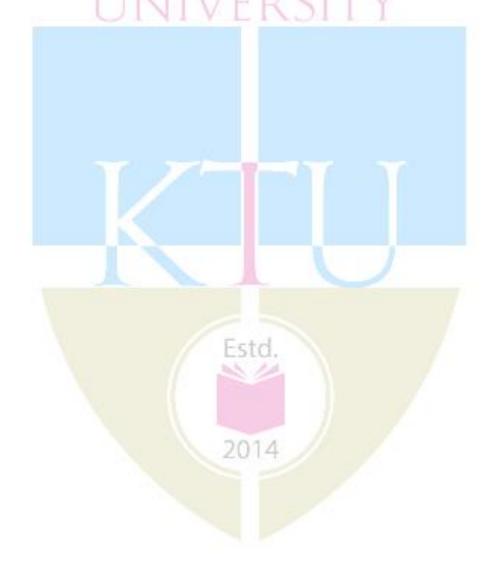
Text Book :

Dominic Reeve, Andrew Chadwick, Chris Fleming. Coastal Engineering : Processes, Theory and Design Practice, CRC Press, 2015

References:

- 1. Narashimhan, S.and S. Kathiroli(Ed.), Harbour and Coastal Engineering(Indian Scenario), -NIOT Chennai, 2002
- 2. US Army Corps of Engineers, Coastal Engineering Manual, 2002
- 3. US Army Corps of Engineers, Shore Protection Manual, Coastal Engineering Research Centre, Washington, 1984.
- 4. V.Sundar, Ocean wave Mechanics Applications in Marine Structures, Ane Book Pvt Ltd, New Delhi, 2016.
- 5. William Kamphuis ; Introduction to Coastal Engineering and Management, World Scientific, 2002.

COURSE I LAIN				
Module	Contents	Hours	Sem. Exam Marks %	
Ι	A brief overview on fundamental principles of fluid mechanics (No questions for examination). Characteristics of a regular ocean wave (Wave length, Wave period and wave celerity).Difference between regular and random waves, Linear Wave theory-Assumptions. Boundary Conditions-Kinematic free surface, Dynamic free	7	15	


COURSE PLAN

	surface. Separable solution of Laplace Equation for velocity potential. Dispersion equation derivation, Dispersion relationship in different water depth conditions (Shallow, intermediate and deep). Worked out exercises.				
Ш	Particle velocity and acceleration under wave transport. Particle Displacement. Orbital motion of water particles at different water depth. Derivation for potential energy and kinetic energy. Worked out exercises. Energy flux/Wave power, Derivation for group celerity.	1	7	15	
	FIRST INTERNAL EXAMINATION				
III	Wave propagation in shallow water- Wave shoaling –Derivation for shoaling coefficient- Worked out exercises. Wave refraction- analytical expression for refraction coefficient, Combined effect of shoaling and refraction-worked out exercises. Wave diffraction –its significance in harbor planning. Wave reflection-effect of surf similarity parameter. Wave breaking- in shallow water, Breaker types. Wave set up and set down, Wave run up.		6	15	
IV	Pressure field under progressive wave, Pressure response factor, Dynamic pressure component. Wave force formulation, force regimes. Wave forces on slender circular members-Morrison Equation. Worked out exercises.		6	15	
	SECOND INTERNAL EXAMINATION				
V	Discussion on Wave Forces on large bodies, Froude –Krylov force- general theory. Diffraction theory-Linear diffraction problem- general theory and solution formulation. Wave forces on coastal structures-A brief overview on small amplitude wave theories – only at conceptual level. Wave force by Hirori Formula, Sainflou formula, Nagai Formula. Discussion only on Goda Formula.	7	8	20	
VI	Introduction to beach and Coastal process-terms describing beach profile. Coastal erosion process-Natural and man made factors. Shallow water effects in coastal erosion. Long shore sediment transport and its effects on coastal process (only discussion). Near shore currents, cross shore sediment transport. Coastal protection (Only discussion, design is not expected)-important factors to be considered. Coastal protection methods-shore parallel and shore perpendicular structures, beach nourishment, Environmental parameters considered in design.		8	20	
	END SEMESTER EXAMINATION				

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

Course Co	codeL-T-P- CreditsYear of Introduction						
CE463	BRIDGE ENGINEERING	3-0-0-3		2016			
Prerequisi	Prerequisite: CE 301 Design of Concrete structures I						
stru Syllabus :	ectives: impart knowledge on important types of bridge structures, the ctural configurations, assessment of loads and perform design insiderations for road bridges, Standard specifications for road	<u>F</u> AI					
bridges and	box culverts, T beam bridges, Prestressed concrete bridges, s						
 i. use ii. ana iii. des iv. des v. des v. des vi. det Text Books 1. Jag 2. Joh Co. 3. N.K References 1. Kri 200 2. Por 3. Swa col 	 ii. analyse, design and detail Box culverts for the given loading iii. design and detail T-Beam bridges iv. design and check the stability of piers and abutments v. design bridge bearings vi. detail bridge foundations and prepare the bar bending schedule Text Books : Jagadish T.R. & M.A. Jayaram, "Design of Bridge Structures",2nd Edition, 2009. Johnson victor D, "Essentials of Bridge Engineering", 7th Edition, Oxford, IBH publishing Co.,Ltd, 2006 N.KrishnaRaju "Prestressed Concrete Bridges" CBS Publishers 2012 References: Krishna Raju N., "Design of Bridges", 4th Edition, Oxford and IBH Publishing Co., Ltd., 2008 Swami Saran, "Analysis and Design of sub-structures",2nd Edition, 2008. Swami Saran, "Analysis and Design of Sub-structures",2nd Edition, Oxford IBH Publishing co Itd., 2006. 						
	COURSE PLAN						
Module	Contents		Hours	Sem. Exam Marks %			
I Introduction :Definition and Basic Forms, Component of bridge, classification of bridge, short history of bridge development, Site selection-Soil Exploration for site Importance of Hydraulic factors in Bridge Design. General arrangement drawing.							

п	Standard specification for Road bridges : Width of carriageway- Clearances- Loads to be considered- Dead load – I.R.C. standard live loads- Impact effect – Wind load –Longitudinal forces- Centrifugal forces- Horizontal forces due to water currents – Buoyancy effect- Earth pressure.	6	15	
	FIRST INTERNAL EXAMINATION			
ш	 Solid slab bridges : Introduction, General design features, Effective width method. Simply supported and cantilever Slab Bridge, analysis and design. Box Culverts : Introduction to analysis, design and detailing, Loading conditions (detailed design not expected) 	7	15	
IV	Beam and slab bridges: Introduction, Design of interior panel of slab. Pigeaud's method, Calculation of longitudinal moment Courbon's theory, Design of longitudinal girder, design example. and Reinforcement detailing	7	15	
	SECOND INTERNAL EXAMINATION			
V	Introduction to pre-stressed concrete bridges (Design Concepts only) Determination of SMinimum Section Modulus, Prestressing Force and eccentricity (Derivation not required) Substructures : Analysis and Design of Abutments and pier- detailing.	8	20	
VI	Bridge bearings: forces on bearings, design of elastomeric bearings, basics for selection of bearings. Types of foundations, well foundation-open well foundation, components of well foundation, pile foundations (designs not included) - detailing only	8	20	
	END SEMESTER EXAMINATION			

ESTO. QUESTION PAPER PATTERN (External Evaluation)

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE465	GEO-ENVIRONMENTAL ENGINEERING	3-0-0-3	2016

Pre-requisite: CE 305 Geotechnical Engineering- II

Course objectives:

- To create a awareness in the field of Geo-Environmental Engineering
- To impart the knowledge on Geotechnical aspects in the disposal of waste materials and the remediation of contaminated sites
- To familiarise design of landfill and know the effect of change in environment on soil properties.

Syllabus :

Introduction and Soil-water-environment interaction, Geotechnical applications of waste materials, Geotechnical characterization of waste and disposal, Site characterization, Landfill Components its functions and design, Compacted clay liner, selection of soil, methodology of construction, Geosynthetics in landfill- types and functions, geosynthetic clay liners - Leachate and Gas Management, Soil remediation, Investigation of contaminated soil, insitu/exiture mediations, bio remediation, thermal remediation, pump and treat method, phyto remediation and electro kinetic remediation, Leachate disposal and Post closure of landfill, Variation in properties of soil due to change in environment

Expected Outcomes:

The students will be able to:

- i. Deal with geoenvironmental engineering problems
- ii. Utilize waste in Geotechnical applications
- iii. Design Landfill
- iv. Mange leachate and landfill gas
- v. Do investigation on contaminated site and soil remediation
- vi. Assess variation in engineering properties of soil due to change in environment

Text Books / References

- 1. Daniel, D.E. (1993). Geotechnical Practice for Waste Disposal. Chapman, and Hall, London.
- 2. Koerner, R.M. (2005). Designing with Geosynthetics. Fifth Edition. Prentice Hall, New Jersey.
- 3. Reddi L.N and Inyang HI (2000) Geoenvironmental Engineering: Principles and Applications, Marcel Dekker Inc Publication
- 4. R. N. Yong (2000) Geoenvironmental Engineering: Contaminated Soils, Pollutant Fate, Mitigation Lewis Publication.
- 5. Dr. G V Rao and Dr. R S Sasidhar (2009) Solid waste Management and Engineered Landfills, Saimaster Geoenvironmental Services Pvt. Ltd. Publication.
- 6. Ayyar TSR (2000) Soil engineering in relation to environment, LBS centre for Science and Technology, Trivandrum.
- Hari D. Sharma, Krishna R. Reddy (2004) Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies, Publisher: John Wiley & Sons Inc.
- 8. Donald L. Wise, Debra J. Trantolo, Hilary I. Inyang, Edward J. Cichon (2000) Remediation Engineering of Contaminated Soils, Publisher: Marcel Dekker Inc.

	COURSE PLAN		
Module	Contents	Hours	Sem. Exam Marks %
Ι	Introduction and Soil-water-environment interaction : Introduction to geoenvironmental Engineering, Soil-water-environment interaction relating to geotechnical problems, Waste:-source, classification and management of waste, Physical, chemical and geotechnical characterization of municipal solid waste, Impact of waste dump and its remediation	6	15
п	Geotechnical application of waste and disposal: Geotechnical use of different types such as Thermal power plant waste, MSW, mine waste, industrial waste. Waste disposal facilities, Parameters controlling the selection of site for sanitary and industrial landfill. Site characterization. MoEF guidelines.	7	15
	FIRST INTERNAL EXAMINATION		
III	Landfill Components :Landfill layout and capacity, components of landfill and its functions. Types and functions of liner and cover systems, Compacted clay liner, selection of soil for liner, methodology of construction.	6	15
IV	Leachate, Gas Management and Geosynthetics: Management of Leachate and gas. Various components of leachate collection and removal system and its design., gas disposal/utilization. Closure and post closure monitoring system Geosynthetics- Geo membranes - geosynthetics clay liners -testing and design aspects.	6	15
	SECOND INTERNAL EXAMINATION		
V	Soil remediation : Investigation of contaminated soil, sampling, assessment Transport of contaminants in saturated soil. Remediation of contaminated soil- in-situ / exit remediation, bio remediation, thermal remediation, pump and treat method, phyto remediation and electro-kinetic remediation	9	20
VI	Change in engineering properties due to change in environment. Variation in Engineering properties of soil –atterberg limit, shear strength, permeability and swelling due to change in environment/pore fluid.	8	20
	END SEMESTER EXAMINATION		

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module
2.Each question can have a maximum of 4 subdivisions (a, b, c, d)

Course Code	Course Name	L-T-P- Credits		ear of oduction
CE467	HIGHWAY PAVEMENT DESIGN	3-0-0-3		2016
Pre-requis	te : CE208 Geo Technical Engineering - I			
• To des	bjectives : introduce highway pavements, design concepts and material pr understand and enable students to carry out design of bitumin ign flexible and rigid highway pavements introduce the concepts of pavement evaluation and rehabilitation	nous mi		alyse and
Analysis o	on to highway pavements – Subgrade soil properties – Desig of flexible pavements- Design of flexible pavements- Analy rigid pavements-Pavement evaluation- Introduction to design or	sis of r	igid p	avements
i. ide ii. ana	atcome: Its will be able to ntify the pavement components and design bituminous mixes, lyze and design flexible and rigid pavements luate structural condition of pavement.			
Text Book	*			
edi 2. Ya 3. Kh	der and Witezak, Principles of Pavement design, John Wiley an tion,1975. ng, Design of functional pavements, McGraw- Hill,1972. anna S. K. & Justo C. E. G., Highway Engineering, Nemchand ss & Hudson, 'Pavement Management System', McGraw Hill H	& Bros,	9e.	
2. IR 3. IR	s: C: 37 - 2001, 'Guidelines for the Design of Flexible Pavements' C: 58 – 2002, 'Guidelines for the Design of Rigid Pavements'. C: 37-2012, 'Tentative Guidelines for the Design of Flexible Pa C: 58-2011, Guidelines for Design of Plain Jointed Rigid Paven	vements		vays.
Module	Contents	Н	ours	Sem. Exam Marks %
Ι	Introduction to highway pavements, Types and component pa of pavements, Factors affecting design and performance pavements, Functions and significance of sub grade properti Various methods of assessment of sub grade soil strength pavement design Mix design procedures in mechanical stabilization of so	of es, for	6	15

	Design of bituminous mixes by Marshall, Hubbard - field and		
	Hveem's methods		
II	Introduction to analysis and design of flexible pavements, Stresses and deflections in homogeneous masses, Burmister's 2 layer and 3 layer theories, Wheel load stresses, ESWL of multiple wheels, Repeated loads and EWL factors FIRST INTERNAL EXAMINATION	6	15
	FIRST INTERNAL EXAMINATION		
Ш	Empirical, semi - empirical and theoretical approaches for flexible pavement design, Group index, CBR, Triaxial, Mcleod and Burmister layered system methods	7	15
IV	Introduction to analysis and design of rigid pavements, Types of stresses and causes, Factors influencing stresses, General conditions in rigid pavement analysis, Warping stresses, Frictional stresses, Combined stresses	7	15
	SECOND INTERNAL EXAMINATION		
V	Joints in cement concrete pavements, Joint spacings, Design of slab thickness, Design and detailing of longitudinal, contraction and expansion joints, IRC methods of Design	8	20
VI	Introduction to pavement evaluation, Structural and functional requirements of flexible and rigid pavements, Quality control tests for highway pavements, Evaluation of pavement structural condition by Benkelman beam, rebound deflection and plate load tests, Introduction to design of pavement overlays and the use of geosynthetics	8	20
	END SEMESTER EXAMINATION		<u> </u>

2014

Latu,

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI : 2 questions out of 3 questions carrying 20 marks each
- Note : 1.Each part should have at least one question from each module

Course Code	Course Name L-T- Cred		Year of troduction	
CE469	ENVIRONMENTAL IMPACT ASSESSMENT 3-0-()-3	2016	
Prerequisi	tes: Nil			
Course ob	jectives:	A		
• To	know the various types of environmental pollution	M		
• To	make aware the impact due to various types of pollutants and their	assessment	technique	
characteris Noise poll	Pollution, Types. Air pollution-sources, effects, types of pollutics of water pollutants, Solid wastes, sources, types, soil pollutition, Impacts, positive and negative Environmental impact assendology adopted, EIA procedure in India, Case studies.	on, pesticio	le pollution.	
Expected				
•	The students will gain basic knowledge of various pollution source	s and their	impacts	
	/ References: Srivastava, Environment impact Assessment, APH Publishing, 20	14		
	n Glasson, Riki Therivel & S Andrew Chadwick "Introduction		University	
	lege London Press Limited, 2011		Onversity	
3. Lar	ry W Canter, "Environmental Impact A <mark>s</mark> sessment", McGraw Hill I	nc. , New Y	York, 1995.	
4. Min	nistry of Environment & Forests, Govt. <mark>o</mark> f India 2006 EIA Notificat	ion		
5. Rai	G J and Wooten C.D "EIA Analysis Hand Book" Mc Graw Hill			
6. Rol	pert A Corbett "Standard Handbook of Environmental Engineering"	' McGraw	Hill, 1999.	
	COURSE PLAN			
			Sem.	
Module	Contents	Hours	Exam Marks %	
	INTRODUCTION: Classification of Pollution and Pollutants, -			
	Evolution of EIA (Global and Indian Scenario)- Elements of EIA			
Ι		6	15	
	Clearance process in India - Key Elements in 2006 EIA(Govt. of India) Notification			
	AIR POLLUTION: Primary and Secondary Types of Pollutants,			
	sulfur dioxide- nitrogen dioxide, carbon monoxide, WATER			
II	POLLUTION: Point and Non-point Source of Pollution, Major	6	15	
Pollutants of Water, Impact of pollutants				
	FIRST INTERNAL EXAMINATION	·		
	SOLID WASTE: Classification and sources of Solid Waste,			
III	Characteristics, effects, e waste, : Effects of urbanization on land degradation, pesticide pollution	7	15	
	NOISE POLLUTION: Sources of Noise, Effects of Noise,			

	Control measures		
IV	Impacts of pollutants, types, scale of impact-Global, local pollutants. Climate change, Ozone layer depletion, Deforestation, land degradation, Impact of development on vegetation and wild life	7	15,
SECOND INTERNAL EXAMINATION			
v	Socio-economic impacts - Impact assessment Methodologies- Overlays, Checklist, Matrices, Fault Tree Analysis, Event Tree Analysis- Role of an Environmental Engineer- Public Participation	8	20
VI	Standards for Water, Air and Noise Quality - Environmental Management Plan- EIA- Case studies of EIA	8	20
	END SEMESTER EXAMINATION	· · · · · · · · · · · · · · · · · · ·	

QUESTION PAPER PATTERN (External Evaluation) :

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI: 2 questions out of 3 questions carrying 20 marks each
- Note : 1.Each part should have at least one question from each module

2. Each question can have a maximum of 4 subdivisions (a, b, c, d)

2014

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE471	ADVANCED STRUCTURAL DESIGN	3-0-0-3	2016

Prerequisite : CE304 Design of Concrete Structures- II

Course objectives:

- To enable the students to assess the loads on some important types of structures, choose the method of appropriate analysis according to the situation and perform design
- To analyse and design the special structures in steel and understand the new concepts of design

Syllabus :

Design of deep beams, corbels, ribbed slabs, flat slabs, Yield line theory, Design of multi storey buildings, Design of Gantry girder, Design of Industrial structures, beam column connections, Analysis and design of light gauge structures, Tall structures, Shear wall ductility detailing

Course Outcomes:

The students will be able to

- i. design deep beams, corbels. Ribbed slabs
- ii. design and detail a flat slab and multistory buildings
- iii. analyse and design light gauge structures
- iv. calculate the loads on gantry girder and its design
- v. design beam column Connections
- vi. analyse, design and detail multistory building for lateral loads

Text Books / References:

- 1. Krishnaraju.N., Advanced Reinforced Concrete Design, CBS Publishers, 2013
- 2. Mallick S.K. & Gupta A.P., Reinforced Concrete, Oxford & IBH Publishing Co, 6e, 1996.
- 3. Pankaj Agarwal and Manish Shrikandhe, Earthquake Resistant Design of Structures, PHI, 2006
- 4. Punmia B. C., Jain A. K. Comprehensive Design of Steel Structures, Laxmi Publications (P) Ltd, 2017.
- 5. Ramchandra S & Veerendra Gehlot, Design of Steel Structures Vol. II, Standard Book House, 2007
- 6. S.K.Duggal., Design of steel Structures, Tata McGraw-Hill, 2014
- 7. Subramanian N, Design of steel Structures, Oxford University Press, 2015
- 8. Varghese P.C., Advanced Reinforced Concrete Design, PHI, 2005
- 9. William T Segui., Steel Design, Cenage Learning, 6e, 2017
- 10. IS 456 -2000 Code of practice for reinforced concrete design, BIS
- 11. IS 800 2007, Code of practice for Structural steel design, BIS

COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %	
I	Design of Deep beams & Corbels. Design of Ribbed Slabs. Yield line theory of slabs – Design of Rectangular and Circular slabs for UDL and point load at centre.	6	15	
II	Design of flat slabs by direct design method and equivalent	6	15	

COUDCE DI AN

	frame method as per IS 456-2000.		
	Design of multi-bay multi storied portal frames for gravity		
	loads, Pattern loading - Use of SP 16 (Substitute Frame method		
	of analysis may be followed).		
	FIRST INTERNAL EXAMINATION		
III	Design of Light Gauge members - behavior of compression elements- effective width for load and deflection determination- behavior of stiffened and unstiffened elements- moment of resistance of flexural members- design of compression members		15
IV	Design of Gantry Girder :Introduction - Loading consideration & maximum load effect Selection of Gantry girder – Design of gantry girders for primary loads only. Codal provisions	7	15
SECOND INTERNAL EXAMINATION			
V	Design of Industrial structures : Introduction – Classification of Industrial structures- load estimation and steps for Analysis and design. Beam column connections (Unstiffened and stiffened)	8	20
VI	Tall Buildings –Introduction, Structural Systems, Principles of design and detailing of Shear wall. Design of Multistoried framed structures for wind and Earthquake Loads- Equivalent static load method of IS 1893.Ductility detailing for earthquake forces- IS 13920	8	20
	END SEMESTER EXAMINATION		

Maxim<mark>um Marks :100</mark>

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI : 2 questions out of 3 questions carrying 20 marks each
- Note : 1.Each part should have at least one question from each module

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE473	ADVANCED COMPUTATIONAL TECHNIQUES AND OPTIMIZATION	3-0-0-3	2016

Prerequisite : CE306 Computer Programming and Computational Techniques

Course objectives:

- To introduce different numerical solutions and importance of optimization
- To impart ability to apply mathematics and optimizing techniques for finding solutions to real time problems.

Syllabus :

Introduction to numerical methods- errors in numerical methods-Systems of linear algebraic equations- Elimination and factorization methods- Gauss Seidel iteration. Eigen Value problemspower method. General Optimisation procedures - and features of mathematical programming as applicable to Civil engineering problems. Unconstrained and constrained optimization problems -Formulation of objective function and constraints. Lagrangian interpolation- Quadratic and Cubic splines (Problems on quadratic splines only)- Data smoothing by least squares criterion- Nonpolynomial models like exponential model and power equation- Multiple linear regression. Numerical integration- Newton - Cotes open quadrature- Linear Programming - Simplex method standard form - Simplex algorithm - Two phase solution by simplex method - Duality of linear programming Formulation of geometric programming. Ordinary differential equations- 1st order equations- Solution by use of Taylor series- Runge- kutta method- Ordinary differential equations of the boundary value type- Finite difference solution- Partial differential equations in two dimensions-Parabolic equations- Explicit finite difference method- Crank-Nicholson implicit method- Ellipse equations Non- Linear Programming problems – one dimensional minimisation. Unconstrained optimization Techniques Direct search method. Random search Univariate pattern search. Descent methods.

Course Outcomes:

The students will be able to:

- i. Find different numerical solutions of complicated problems
- ii. Determine solutions of real time problems applying numerical methods in mathematics
- iii. Understand the importance of optimization and apply optimization techniques in real time problems

Text Books / References:

- 1. Grewal B.S. "Numerical Methods in Engineering and Science" Khanna Publishers.
- 2. Chapra S.C. and Canale R.P. "Numerical Methods for Engineers" Mc Graw Hill 2006.
- 3. Smith G.D. "Numerical solutions for Differential Equations" Mc Graw Hill
- 4. Ketter and Prawel "Modern Methods for Engineering Computations" Mc Graw Hill
- 5. Rajasekharan S. "Numerical Methods in Science and Engineering"S Chand & company 2003.
- 6. Rajasekharan S. "Numerical Methods for Initial and Boundary value problems," Khanna publishers 1989.
- 7. Terrence .J.Akai "Applied Numerical Methods for Engineers", Wiley publishers 1994.
- 8. R.L. Fox, Optimisation methods in Engineering Design, Addison Wesely
- 9. S.S. Rao, Optimisation Theory and applications, ,Wiley Eastern.
- 10. Belegundu., Optimisation concepts and Applications Engineering,

11. Aı	11. Andrew B Templeman, Civil Engineering Systems			
	COURSE PLAN			
Module	Contents	Hours	Sem. Exam Marks %	
Ι	Introduction to numerical methods- errors in numerical methods- Systems of linear algebraic equations- Elimination and factorization methods- Gauss Seidel iteration. Eigen Value problems- power method.	7	15	
Π	General Optimisation procedures - and features of mathematical programming as applicable to Civil engineering problems. Unconstrained and constrained optimization problems - Formulation of objective function and constraints.	6	15	
	FIRST INTERNAL EXAMINATION	I	1	
Ш	Lagrangian interpolation- Quadratic and Cubic splines (Problems on quadratic splines only)- Data smoothing by least squares criterion- Non- polynomial models like exponential model and power equation- Multiple linear regression. Numerical integration- Newton – Cotes open quadrature	7	15	
IV	Linear Programming - Simplex method standard form - Simplex algorithm - Two phase solution by simplex method - Duality of linear programming Formulation of geometric programming	6	15	
	SECOND INTERNAL EXAMINATION			
V	Ordinary differential equations- 1st order equations- Solution by use of Taylor series- Runge- kutta method- Ordinary differential equations of the boundary value type- Finite difference solution- Partial differential equations in two dimensions- Parabolic equations- Explicit finite difference method- Crank-Nicholson implicit method- Ellipse equations	7	20	
VI	Non- Linear Programming problems – one dimensional minimisation. Unconstrained optimization Techniques Direct search method. Random search Univariate pattern search. Descent methods	7	20	
	END SEMESTER EXAMINATION			

QUESTION PAPER PATTERN (External Evaluation) :

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

Course Code	Course Name	L-T-P- Credits	Year of Introduction
CE402	ENVIRONMENTAL ENGINEERING – II	3-0-0-3	2016
Prerequisites: CH	2405 Environmental Engineering- I		
Course objectives	3:		
• To underst	and the various sources and characteristics of wast	ewater	
• To know the	ne various treatment methods available for wastew	ater treatment	
4	I J ADDOL MA	LIV	L
	vater, sources, characteristics, oxygen demand De		
	all flow conditions. Sewer appurtenances, Disposa		
1	sag curve, Treatment methods, Aerobic and anaer		Ū.
	reening, Grit chamber, Sedimentation tank, Actiological contactor, Septic tanks, Imhoff tanks, Oxi	U 1	
	sludge blanket reactors, Sludge digestion, Sludge		Oxidation polids,
Course Outcome		urynig ocu.	
The studen			
	e an understanding of the various types of treatme	nt methods for	wastewater
	by the design aspects of various treatment units in		
Text Books			-
	a, "Waste Water Engineering", Laxmi Publication		
	Peavy, Donald R Rowe, George Tchobanoglous,	Environmental	Engineering, Mc
	Education, 1984		
	"Sewage Treatment & Disposal and Waste wate	er Engineering	", Standard Book
· · ·	wDelhi, 2e, 2008. "Sources dispessioned Air pollution Engineering"	Vhonno Duhl	ishang 2008
e	, "Sewage disposal and Air pollution Engineering", Water Supply and Engineering, Dhanpat Rai Pub		
J. US DITUIE	, water Suppry and Engineering, Dhanpat Kal Fub	nshing Compa	11y, 2014
References			
	a, R.A. Christian, Wastewater treatment: Concepts	And Design A	pproach, PHI
learning Py	rt Ltd, 2013	1	
	a, Shyam R. Asolekar, Wastewater Treatment for D	Pollution Contr	rol and Reuse,
	ll Education, 2007		
$\gamma V N D \dots$	I Discussion of Discussion and The sine series of Class	ad Durk Lingtigen	~ ')()()7

- 3. K N Duggal, Elements of Environmental Engineering, S Chand Publications, 2007
- 4. Mackenzie L Davis, Introduction to Environmental Engineering, McGraw Hill Education (India), 5e, 2012
- 5. Metcalf and Eddy, "Waste Water Engineering", Tata McGraw Hill publishing Co Ltd, 2003

	COURSE PLAN			
Module	Contents	Hours	Sem. Exam Marks %	
Ι	Wastewater- Sources and flow rates, Domestic wastewater, Estimation of quantity of wastewater, Dry weather flow, storm water flow, Time of concentration Sewers, Design of circular sewers under full and partial flow	6	15	

	conditions		
п	Sewer appurtenances-Man holes, Catch basin, flushing devices, Inverted siphon. Ventilation of sewers.Sewage, Sewerage, Systems of sewerageSewage characteristics- Physical, chemical and biological parameters, Biological oxygen demand, first stage BOD, Chemical oxygen demand, Relative stability, Population equivalent.	7	15
	FIRST INTERNAL EXAMINATION		
ш	 Waste water disposal systems- Self purification of streams, Dilution -Oxygen sag curve, Streeter Phelp's Equation, land treatment Treatment of sewage-Preliminary and Primary treatment -Theory and design of Screen, Grit chamber, Detritus chamber, Flow equalization tank and Sedimentation tank. 	6	15
IV	Secondary treatment methods-Contact bed, Intermittent sand filter, Theory and design of Trickling filter, Activated sludge process, Trickling filter-High rate, standard. Rotating biological contactor		15
	SECOND INTERNAL EXAMINATION		
V	Design of Septic tank and Imhoff tank, Principle and working of Oxidation ditch and oxidation ponds. Aerated lagoons, Design of upflow anaerobic sludge blanket reactors	8	20
VI	Sludge treatment and disposal-Methods of thickening, Sludge digestion- Anaerobic digestion, Design of sludge digestion tanks and Sludge drying beds, methods of sludge disposal	8	20
	END SEMESTER EXAMINATION		

• EXTERNAL EVALUATION:

Maximum Marks :100

Exam Duration: 3 Hrs

QUESTION PAPER PATTERN (External Evaluation) :

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE404	CIVIL ENGINEERING PROJECT MANAGEMENT	3-0-0-3	2016

Prerequisite: HS300 Principles of Management

Course objectives:

- To impart knowledge on principles of planning and scheduling projects, with emphasis on construction.
- To understand the uses and suitability of various construction equipment,
- To study the legal and ethical issues related to construction projects
- To become familiar with TQM and similar concepts related to quality
- To impart knowledge in the principles of safe construction practices
- To understand the need of ethical considerations in construction.

Syllabus : Construction Planning and Scheduling, Construction disputes and settlement, Ethics in Construction, Construction safety, Principles of Materials management, Quality management practices, Construction procedures

Expected Outcomes:

The students will be able to:

- i. Plan and schedule a construction project.
- **ii.** Select an appropriate construction equipment for a specific job
- **iii.** Familiarise the legal procedures in construction contracts
- iv. Formulate suitable quality management plan for construction
- **v.** Familiarise the safety practices and procedures.
- vi. Apply principles of ethics in decision making.

Text Books:

- 1. Kumar Neeraj Jha, Construction Project Management, Pearson, Dorling Kindersley (India) pvt. Lt
- 2. L.S. Srinath PERT and CPM –Principles and Applications, Affiliated East-West Press, 2001
- **3.** Peurifoy and Schexnayder Construction Planning, Equipment, and Methods, Tata McGraw Hill, 2010

Reference Books

- 1. B.C.Punmia & K K Khandelwal, Project Planning with CPM and PERT, Laxmi Publication, New Delhi, 2016
- 2. Charles D Fledderman, Engineering Ethics, Prentice Hall, 2012
- 3. <u>F. Harris</u>, Modern Construction and Ground Engineering Equipment and Methods, Prentice Hall, 1994
- 4. Gahlot and Dhir, Construction Planning and Management, New Age International, 1992
- 5. K KChitkara, Construction Project Management, McGraw Hill Education Pvt Ltd., 2000
- 6. Khanna, O.P., Industrial Engineering and Management., Dhanapat Rai Publications, 1980
- 7. National Building Code, BIS
- 8. P.P. Dharwadkar, Management in Construction Industry, Oxford and IBH
- 9. Shrivastava, Construction Planning and Management, Galgotia Publications, 2000

	COURSE PLAN			
Module	Contents	Hours	Sem. Exam Marks %	

Ι	Unique features of construction projects ; Identification of components –Principles of preparing DPR- Construction planning and scheduling - I – Bar charts, Network Techniques, Use of CPM and PERT for planning – Drawing network diagrams – time estimates – slack – critical path-Examples		7	15
II	Crashing and time –cost trade off, Resource smoothing and resources levelling - Construction, equipment, material and labour schedules. Preparation of job layout. Codification of the planning system : Codification approach- Work package and activities identification code – Resource codes – Cost and Finance accounting codes – Technical document codes.	1	7	15
	FIRST INTERNAL EXAMINATION			
III	Construction disputes and settlement : Types of disputes – Modes of settlement of disputes – Arbitration- Arbitrator - Advantages and disadvantages of arbitration – Arbitration Award. Construction cost and budget :Construction cost – Classification of construction cost – Unit rate costing of resources- Budget – Types of budget – Project Master budget.	(5	15
IV	Concept of ethics – Professional ethics – ethical problems – provisions of a professional code – Role of professional bodies.Project management information system- Concept – Information system computerization – Acquiring a system – Problems in information system management - Benefits of computerized information system.		7	15
	SECOND INTERNAL EXAMINATION			
V	Concept of materials management – inventory – inventory control – Economic order quantity- ABC analysis. Safety in construction – Safety measures in different stages of construction – implementation of safety programme.		7	20
VI	Construction procedures: different methods of construction – types of contract – Tenders – prequalification procedure - earnest money deposit – contract document – General and important conditions of contract - measurement and measurement book - Inspection and quality control - need, principles and stages. Basics of Total Quality Management		3	20
END SEMESTER EXAMINATION				

Maximum Marks :100

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module

Code	e Course Name L-T-P-	Credits	Year of Introduction
CE462	2 TOWN AND COUNTRY PLANNING 3-0	0-3	2016
Prerequi	site : Nil		
Course C			
pla	b) expose various levels of planning, the elements involved anning and their interrelationships b) learn to draw up a town development plan.	in urban	and regional
Syllabus Goals and state, nat Character of new to		Irban Strue - zoning - 1	cture and its Development
Maps. Course C	Dutcome:		
	nt will be able to	1 1 1	•, • •
	entify and develop the various components of planning at neig d national levels	iborhood,	city, regional
ii. fa	miliarize with spatial standards of facilities and prepare velopment.	base map	s for urban
Text Boo	ks:		
2. Kl	atchinson B.G., Principles of Transportation Systems Planning, M adiyali L.R. Traffic Engineering and Transport planning, Khanr 199		
2. Kl 19 3. Oj	nadiyali L.R. Traffic Engineering and Transport planning, Khanr 99 openheim N., Applied Models in Urban and Regional Analysis, I	a Tech Put	olishers,
2. Kl 19 3. Oj	nadiyali L.R. Traffic Engineering and Transport planning, Khanr 199 openheim N., Applied Models in Urban and Regional Analysis, I angwala, Town planning, Charotar publishing house, 28e, 2015.	a Tech Put	olishers,
2. Kl 19 3. Op 4. Ra Reference 1. Ei 2. Hi 3. N. pla 4. W	hadiyali L.R. Traffic Engineering and Transport planning, Khanr 199 openheim N., Applied Models in Urban and Regional Analysis, I ungwala, Town planning, Charotar publishing house, 28e, 2015. es: sner S, Gallion A and Eisner S., The Urban Pattern, Wiley, 1993 raskar G K, Fundamentals of Town planning, Dhanpat Rai publi K Gandhi – Study of Town and Country planning in India – In anning Association, 1973. ilson, A.G, Urban and Regional Models in Geography and Pla	a Tech Pub Prentice-Ha cations, 19 dian Town	93. and Country
2. Kl 19 3. Op 4. Ra Referenc 1. Ei 2. Hi 3. N. pla 4. W	hadiyali L.R. Traffic Engineering and Transport planning, Khanr 99 openheim N., Applied Models in Urban and Regional Analysis, I angwala, Town planning, Charotar publishing house, 28e, 2015. es: sner S, Gallion A and Eisner S., The Urban Pattern, Wiley, 1993 raskar G K, Fundamentals of Town planning, Dhanpat Rai publi K Gandhi – Study of Town and Country planning in India – In anning Association, 1973.	a Tech Pub Prentice-Ha cations, 19 dian Town	olishers, 11, 1980 93. and Country an Wiley and
2. Kl 19 3. Op 4. Ra Reference 1. Ei 2. Hi 3. N. pla 4. W	hadiyali L.R. Traffic Engineering and Transport planning, Khanr 199 openheim N., Applied Models in Urban and Regional Analysis, I ungwala, Town planning, Charotar publishing house, 28e, 2015. es: sner S, Gallion A and Eisner S., The Urban Pattern, Wiley, 1993 raskar G K, Fundamentals of Town planning, Dhanpat Rai publi K Gandhi – Study of Town and Country planning in India – In anning Association, 1973. ilson, A.G, Urban and Regional Models in Geography and Pla	a Tech Pub Prentice-Ha cations, 19 dian Town	93. and Country
2. Kl 19 3. Op 4. Ra Reference 1. Ei 2. Hi 3. N. pla 4. W Sc	hadiyali L.R. Traffic Engineering and Transport planning, Khanr 99 openheim N., Applied Models in Urban and Regional Analysis, I angwala, Town planning, Charotar publishing house, 28e, 2015. es: sner S, Gallion A and Eisner S., The Urban Pattern, Wiley, 1993 raskar G K, Fundamentals of Town planning, Dhanpat Rai publi K Gandhi – Study of Town and Country planning in India – In anning Association, 1973. ilson, A.G, Urban and Regional Models in Geography and Pla ons, 1974.	a Tech Pub Prentice-Ha cations, 19 dian Town unning, Joh Hours	93. and Country Wiley and Sem. Exam

	regions, delineation of regions - Types and contents of regional		
	planning for block, district, state, nation, NCR, resource region,		
	agro-climatic region, topographic region and sectoral planning,		
	major regional problems and their solutions.		
	FIRST INTERNAL EXAMINATION		
ш	Theories of urbanization-Concentric Zone Theory; Sector Theory; Multiple Nuclei Theory; Land Use and Land Value Theory of William Alonso; City as an organism: a physical entity, social entity and political entity Study of Urban Forms such as Garden City, Precincts, Neighbourhoods, - MARS Plan, LeCorbusier Concept, Radburn Concept	M	15
IV	Urban Structure and its Characteristics - Functions of Transportation Network - concept of accessibility and mobility, Transit Oriented Development (TOD) - Spatial standards for residential, industrial, commercial and recreational areas, space standards for facility areas and utilities, Provisions of Town Planning Act, zoning, subdivision practice metro region concept	7	15
	practice, metro region concept.		
	SECOND INTERNAL EXAMINATION	_	
V	Concept of New Towns: Meaning, role and functions: Special planning and development considerations, scope and limitations of new town development, Indian experience of planning and development of new towns. Urban Renewal: Meaning, significance, scope and limitations, urban renewal as a part of metropolitan plan	8	20
VI	Town Development Plan: Scope, contents and preparation. A case study of development plan, scope, content and preparation of zonal development plans, plan implementation - organizational legal and financial aspects, public participation in plan formulation and implementation - Techniques of Preparation of Base Maps: Drawing size, scale, format, orientation, reduction and enlargement of base maps.	8	20
	END SEMESTER EXAMINATION		

Maximum Marks :100

2014

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each

Part C - Module V & VI : $\ 2$ questions out of 3 questions carrying 20 marks each

Note: 1.Each part should have at least one question from each module

Course	Course Name	L-T-P-	Year of
Code		Credits	Introduction
CE464	REINFORCED SOIL STRUCTURES AND GEO SYNTHETICS	3-0-0-3	2016

Prerequisite : CE305 Geotechnical Engineering - II

Course objectives:

- To understand the history and mechanism of reinforced soil
- To know the various types of geosynthetics, their functions and applications.
- To enable the design of reinforced soil retaining structures.

Syllabus :

Introduction- Functions of geosynthetics. Reinforcement action – Mechanism of reinforced soil. Component materials and their properties – fill, various types of reinforcements with advantages, disadvantages, facings. - Factors affecting the performance and behaviour of reinforced soil.

Design and analysis of reinforced soil retaining walls-General aspects - External stability of vertically faced reinforced soil retaining wall. Internal stability – Tie back wedge analysis or coherent gravity analysis or reinforced soil retaining walls with metallic strip and continuous geosynthetic reinforcements. Assumptions and problems. Construction methods of reinforced retaining walls. Bearing capacity improvement using soil reinforcement – Binquet and Lee's analysis - Simple problems in bearing capacity of reinforced soil foundation. Concept of Geocells, encased stone columns, prefabricated vertical drains, geocomposites, soil nailing, geotubes, geobags (only basic concepts). Natural geotextiles using coir and jute with relative advantages and disadvantages, application areas.

Expected Outcomes:

The students will

- i. Understand the history and mechanism of reinforced soil
- **ii.** Become aware about situations where geosynthetics can be used.
- iii. Know about various types of geosynthetics and their functions
- iv. Be able to do dimple design of reinforced soil retaining walls and reinforced earth beds.

Text Books / References:

- 1. Jones, C.J.F.P. (1985). Earth reinforcement and soil structures. Butterworth, London.
- 2. Koerner, R.M. (1999). Designing with Geosynthetics, Prentice Hall, New Jersey, USA, 4th edition.
- 3. Rao, G.V. (2007). Geosynthetics An Introduction. Sai Master Geoenvironmental Services Pvt. Ltd., Hyderabad
- 4. Rao, G.V., Kumar, S. J. and Raju, G.V.S.S. (Eds.). Earth Reinforcement Design and Construction. Publication No. 314, Central Board of Irrigation and Power, New Delhi, 2012.
- 5. Sivakumar Babu, G.L. (2006). An introduction to Soil reinforcement and geosynthetics. United Press (India) Pvt. Ltd.

	COURSE PLAN				
Module	Contents	Hours	Sem. Exam Marks %		
Ι	Introduction -history –ancient and modern structures- Types of geosynthetics, advantages, disadvantages. Functions of geosynthetics and application areas where these functions are	5	15		

	utilized such as in retaining walls, slopes, embankments, railway tracks, pavements etc. (general overview)			
п	Raw materials used for geosynthetics, manufacturing process of woven and non woven geotextiles, geomembranes, geogrids. Properties of geosynthetics. Creep and long term performance. Reinforced soil - Advantages and disadvantages. Fills, Types of facings, Factors affecting the performance of reinforced soil.	7	15	
	FIRST INTERNAL EXAMINATION			
III	Mechanism of reinforcement action - Equivalent Confining Stress Concept, Pseudo Cohesion Concept, Concept of Expanding soil mass. – Simple problems.	7	15	
IV	Design and analysis of vertically faced reinforced soil retaining walls- External stability and Internal stability – Tie back wedge analysis and coherent gravity analysis. Assumptions, limitations and numerical problems.	7	15	
	Construction methods of reinforced retaining walls. Geosynthetics in pavements, function and benefits.			
	SECOND INTERNAL EXAMINATION			
V	 Bearing capacity improvement using soil reinforcement – Binquet and Lee's analysis – Assumptions, failure mechanisms. Simple problems in bearing capacity. Geosynthetics for short term stability of embankments on soft soils. Natural geotextiles, Advantages and disadvantages, functions, 	9	20	
	 erosion control- types of erosion control products, installation methods. Prefabricated vertical drains along with design principles and installation method 	7	20	
VI	Concept of Geocells, Gabion Walls, encased stone columns, geocomposites, soil nailing, geotubes, geobags (only basic concepts), application in landfills.			
END SEMESTER EXAMINATION				

Maximum Marks :100

2014

Exam Duration: 3 Hrs

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each

- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI : 2 questions out of 3 questions carrying 20 marks each

Note: 1.Each part should have at least one question from each module

Course 1	No. Course Name	L-T-P Credits	Year of I	ntroduction
CE46	5 FINITE ELEMENT METHODS	3-0-0-3	2	2016
Prerequi Course O				
	provide a fundamental knowledge on FEM equip to solve basic Engineering problems using FI	EM		
	on to FEM- Basics of 2D elasticity -Development The Direct Stiffness Method- Lagrangian and Her n			
	Outcome adents successfully completing this course are expec gineering problems.	ted to implement FEN	A for solving	g basic
19 2. Cu 3. K 3. K Reference 1. 1. Cl 2. Hi No 3. 3. M 6. Zi	othe K J, Finite Element Procedures in Engine 82 book R D, Malkus D S, and Plesha M E, Con aalysis, John Wiley & Sons, Singapore., 1981 rishnamoorthy C S, Finite Element Analysis- The ew Delhi., 1994	acepts and Applica eory and Programm n to Finite Elements sis, Tata McGraw H and Finite Element A g Design, Wheeler, N ok Co. New York, 199	tions of Fi ning, Tata M s in Enginee ill Educatio nalyses of S lew Delhi., 1 84	nite Element McGraw Hill, ering, Pearson n Private Ltd, tructures, Ane 998
	Course Plan			
Module	Contents		Hours	Sem. Max. Marks %
I	Introduction to FEM- out line of the proc properties- polynomial form- shape function and compatibility in the solution- converge Development of shape functions for truss eleme	form- equilibrium nce requirements.	7	15
П	Basics of 2D elasticity - Strain display constitutive relations- Energy principles-Prin work- Total potential energy- Rayleigh-Ritz n weighted residuals. Gauss elimination - Solution	nciples of virtual nethod- method of	7	15

	FIRST INTERNAL EXAM		
III	The Direct Stiffness Method:- Structure stiffness equations – Properties of [K] – Solution of unknowns – Element stiffness equations – Assembly of elements - Static condensation. Displacement boundary conditions – Stress computation – Support reactions	8	15
IV	Shape functions for C0 and C1 elements – Lagrangian and Hermitian interpolation functions for one dimensional elements Development of shape functions for beam, and frame elements	6	15
	SECOND INTERNAL EXAM		
V	Lagrangian interpolation functions for two and three dimensional elements constant strain triangle- Linear strain triangle- Bilinear plane rectangular elements- Consistent nodal loads- lumped loads- patch test- stress computation	7	20
VI	Isoparametric formulation – Line elements- Plane bilinear element- Iso parametric formulation of Quadratic plane elements- Sub parametric elements and super parametric elements- Gauss quadrature- Plate and shell elements	7	20
	END SEME <mark>S</mark> TER EXAM		

QUESTION PAPER PATTERN (External Evaluation) :

Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV: 2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI: 2 questions out of 3 questions carrying 20 marks each
Note : 1.Each part should have at least one question from each module

Course Code	Course Name	L-T-P- Credits		ear of oduction
CE468	STRUCTURAL DYNAMICS AND EARTHQUAKE RESISTANT DESIGN	3-0-0-3		2016
Prerequisit	te : CE403 Structural Analysis III			
Course obj				
	have an understanding on Earthquakes and Design of structu	ires for earth	quake re	esistance
Syllabus :		AM		10
	n to structural dynamics, Multi degree freedom systems, Ea	1 0	ineering	g, 18
Expected	sions, detailing and codal provisions, Aseismic planning, Sh	lear walls		
	ability to Write the equations of motion for damped and ur	damped vibr	ations f	or SDOF
syst		uninped tier		01 52 01
•	ability to analyse the MDOF systems and calculate the freq	uency & mod	le shape	es
	ability to describe engineering seismology including causes			
	ability to analyze, design multi-storeyed structure using Sei	smic Coeffici	ent and	
-	ponse Spectrum methods	· · /		
	ability to use the concept of aseismic planning for earthqua ability to detail the structures as per IS code and design and			sing IS
0. All a		i uctani shcai	walls us	sing is
	/ References:	-	-	
	io Paz, "Structural Dynamics - Theory <mark>a</mark> nd Computations"			
	kajAgarwal& Manish Shrikhande, "Earthquake Resist	ant Design	of Str	ructures",
	lition, Prentice Hall of India, New Delhi, 2009.	((T)) .	C F	.1 1
	Krishna A.R, Chandrasekharan A.R, Brijesh Chandra ineering", 2nd Edition, South Asian Publishers, New Delhi,		of E	arthquake
•	pra A.K., "Dynamics of Structures", 5th Edition, Pearso		India	n Branch
	ni, 2007.	In Education		r Brunen,
	Duggal, "Earth Quake Resistant Design of Structures",	Oxford uni	versity	Press, 1st
	ion, 2012			
	agh &Penzien, "Dynamics of Structures", 4th Edition,	McGraw H	ill, Int	ernational
	ion, 2008			
IS Codes :	893, IS: 4326 and IS:13920, Bureau of Indian Standards, N	ew Delhi		
15.1	COURSE PLAN			
				End
				Sem.
Module	Contents	H	Iours	Exam
				Marks
				%
	INTRODUCTION TO STRUCTURAL DYNAMICS : Theory of vibrations – Lumped mass and continuous mass	systems		
	Single Degree of Freedom (SDOF) Systems – Formula	•		
I '	(b) of freedom (b) of systems formula		6	15

ITheory of vibrations – Lumped mass and continuous mass systems–
Single Degree of Freedom (SDOF) Systems – Formulation of
equations of motion – Un damped and damped free vibration –
Damped – Force vibrations – Response to harmonic excitation –
Concept of response spectrum.615IIMULTI-DEGREES OF FREEDOM (MDOF) SYSTEMS
(LIMITEDTO 2 DOF):Formulation of equations of motion – Free615

	vibuation Determination of natural fragmentics of vibuation and			
	vibration – Determination of natural frequencies of vibration and			
	mode shapes – Orthogonal properties of normal modes – Mode			
	superposition method of obtaining response.			
	FIRST INTERNAL EXAMINATION			
	EARTHQUAKE ENGINEERING : Engineering Seismology -			
	Earthquake phenomenon - Causes and effects of earthquakes -			
	Faults - Structure of earth - Plate Tectonics- Elastic Rebound			
III	Theory – Earthquake Terminology – Source, Focus, Epicenter etc –		6	15
	Earthquake size - Magnitude and intensity of earthquakes -	A	0	10
	Classification of earthquakes - Seismic waves - Seismic zones -	61		
	Seismic Zoning Map of India – Seismograms and	1		
	Accelerograms.			
	CODAL DESIGN PROVISIONS :	-		
	Review of the latest Indian seismic code IS:1893 – 2002 (Part-I)			
	provisions for buildings – Earthquake design philosophy –			
IV	Assumptions – Analysis by seismic coefficient and response		8	15
	spectrum methods – Displacements and drift requirements –			
	Provisions for torsion – Analysis of a multistoried building using			
	Seismic Coefficient method.			
	SECOND INTERNAL EXAMINATION			
	SEISMIC PLANNING : Plan Configurations – Torsion			
	Irregularities – Re-entrant corners –Non-parallel systems –			
V	Diaphragm Discontinuity – Vertical Discontinuities in load path –		7	20
	Irregularity in strength and stiffness – Mass Irregularities – Vertical			
	Geometric Irregularity – Proximity of Adjacent Buildings.			
	CODAL DETAILING PROVISIONS: Review of the latest Indian			
	codes IS: 4326 and IS: 13920 Provisions for ductile detailing of R.C			
VI	buildings – Beam, column and joints.SHEAR WALLS: Types –		9	20
	Design of Shear walls as per IS: 13920 – Detailing of			
	reinforcements.			
	END SEMESTER EXAMINATION			

Estd.

Maximum Marks: 100

Exam Duration: 3 hours

Part A -Module I & II: 2 questions out of 3 questions carrying 15 marks eachPart B - Module III & IV:2 questions out of 3 questions carrying 15 marks eachPart C - Module V & VI :2 questions out of 3 questions carrying 20 marks each

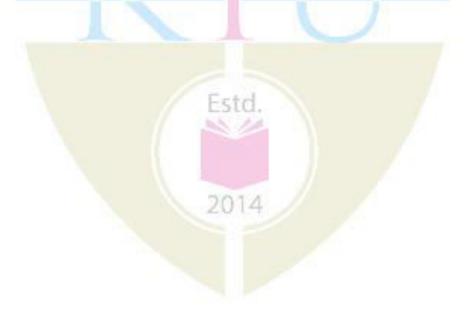
Note : 1.Each part should have at least one question from each module 2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course Code	e Course Name	L-T-P-Credits	Year o Introduc	
CE472	TRANSPORTATION PLANNING	3-0-0-3	2016	
	Prerequisite: NI	Ĺ		
Course C	bjectives:			
	expose the students to the dynamics of uteraction, the steps and techniques involved in t			ransport
Syllabus:	THEFT	- CIC		
Transport	ation planning process - Transportation Syst	ems - Urban Trave	el Patterns and	d Urban
-	ation Technologies - Urban Activity System	- Four Step Plannin	ng process - L	and use
transport		C V		
Course C				
	nt will be able to calibrate and validate plannin	g models, evaluate	various transp	ortation
1 0	alternatives.			
Text Boo				
	ruton, M. J., Introduction to Transportatio			ndon
	ickey, J. W. Metropolitan Transportation			
	apacostas, C. S. and Prevedouros, P.D.	D., Transportation	i Engineerii	ng and
Referenc	anning, Prentice Hall.			
Kelerenc				
1 G	allion, A.B. and Eisner, S., The Urban Pattern, I	Fast-West Press Ne	w Delhi	
	utchinson, B.G., Principles of Urban			anning
	cGraw Hill	Transportation	System 11	
	ayer, M.D and Miller, E .J, Urban Transp	ortation Planning	a Decision (Oriented
	pproach, McGraw Hill.	fortaarion Training		
				End
				Sem.
Module	Contents		Hours	Exam Mark %
	Introduction: Role of transportation in the dev	velopment of a socie	ety	,0
	- Land use-Transportation interaction - (-		
T	constraints in transportation planning proc			15

I	Introduction: Role of transportation in the development of a society - Land use-Transportation interaction - Goal, objectives and constraints in transportation planning process – Transportation Systems overview - Transportation issues and challenges – Basic steps in systems planning process	6	15
II	Different modes of transport - Characteristics of different modes - integration of modes and interactions - impact on environment - Relationship between Movement and Accessibility – Hierarchy of transportation facilities - Brief Study of Urban Travel Patterns and Urban Transportation Technologies - Comprehensive Mobility Plan	7	15
FIRST INTERNAL EXAMINATION			
ш	Urban Transportation Planning:Urban Activity System - Trip-based and Activity-based approaches - inventory, model building, forecasting and evaluation stages –Definition of study area – zoning - Urban Structure and its Characteristics	6	15

IV	Four Step Planning process – Trip generation – trip production and trip attraction models – regression and category analysis - Trip Distribution-Growth factor models, Gravity models - mode split models	8	15
SECOND INTERNAL EXAMINATION			
V	Route choice modeling - diversion curves - basic elements of transportation networks, coding, minimum path trees - traffic assignment - all- or- nothing assignments, capacity restraint techniques	8	20
VI	Land use transport models - Lowry derivative models - Quick response techniques - Non-Transport solutions for transport problems.	7	20

END SEMESTER EXAMINATION


QUESTION PAPER PATTERN (End semester exam)

Maximum Marks :100

Exam Duration: 3 Hrs

Part A - Module I & II :	2 questions out of 3 questions carrying 15 marks each
Part B - Module III & IV:	2 questions out of 3 questions carrying 15 marks each
Part C - Module V & VI :	2 questions out of 3 questions carrying 20 marks each

Note : 1.Each part should have at least one question from each module 2.Each question can have a maximum of 4 subdivisions (a,b,c,d)

Course Code	Course Name	L-T-P-Credits	Year of Introduction
CE474	MUNICIPAL SOLID WASTE MANAGEMENT	3-0-0-3	2016

Prerequisites: Nil

Course objectives:

- 1. To create an awareness of different types of solid waste generated in our environment and their ill effects
- 2. To study the various methods of collection, processing and disposal of solid wastes

Syllabus:

Solid wastes-Types, Properties, Characteristics. Generation of solid wastes, Collection of solid wastes, Processing techniques. Disposal technologies-Physical, Thermal, Biological methods. Energy from solid wastes

Course Outcomes:

- Students will have an awareness of the ill effects of increasing solid wastes
- Students will be able to understand the various methods available for managing solid wastes generated

Text Books

- 1. George Tchobanoglous, Frank Kreith et al "Hand book of solid waste management." Mc Graw hill publications -Newyork.
- 2. William A Worrell, Aarne Vesilind, Solid waste Engineering, Cengage learning
- 3. Howard S Peavy, Donald R Rowe, George Tchobanoglous, "Environmental Engineering" McGrawhill Education

References:

- 1. John Pichtel "Waste management Practices" Taylor& Francis publishers
- 2. David . A . Cornwell, Mackenzie . L .Davis "Introduction to Environmental Engineering" Mc Graw Hill International Edition .
- 3. Daniel . B. Botkin, Edward .A. Keller "Environmental Science" (Earth as a living plant) IV Edition ,John wiley& Sons Inc.
- 4. Robert . A. Corbitt "Hand Book of Environmental Engineering" Mc Graw hill publishing Company

COURSE PLAN				
Module	Contents	Hours	End Sem. Exam Marks %	
I	Wastes-Sources and characteristics - Categories of wastes- Municipal, Industrial, Medical, Universal, Construction and demolition debris, Radioactive, Mining, e wastes, Agricultural waste.	7	15	
II	Waste generation-Methods of estimation of Generation rate- Measure of quantities, Composition- Physical and chemical (simple problems). Storage of solid waste	7	15	
FIRST INTERNAL EXAMINATION				

III	Collection – collection services- collection systems, collection routes-Need for transfer operation. Resource conservation and recovery.	6	15	
IV	Processing techniques- Mechanical volume and size reduction, chemical volume reduction, component separation, Drying (simple problems)	6	15	
	SECOND INTERNAL EXAMINATION			
V	Disposal of solid waste; Sanitary land fill- area method, trench method-advantages and disadvantages, Incineration- types of incinerators -parts of an incinerator-incinerator effluent gas composition	8	20	
VI	Composting- types of composting-Indore process, Bangalore process (advantages and disadvantages). Anaerobic digestion of wastes, Biogas digesters	8	20	
END SEMESTER EXAMINATION				

QUESTION PAPER PATTERN (End Semester Exam)

Maximum Marks :100

Exam Duration: 3 Hrs

- Part A -Module I & II : 2 questions out of 3 questions carrying 15 marks each
- Part B Module III & IV: 2 questions out of 3 questions carrying 15 marks each
- Part C Module V & VI : 2 questions out of 3 questions carrying 20 marks each

2014

Note: 1.Each part should have at least one question from each module